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Abstract
Luttinger liquids are characterized by the critical exponent � of the momentum
distribution around the Fermi momentum kF . Typically � � 1/2, signalling a
singularity characterizing a residual Fermi surface. Results of photoemission
experiments can be interpreted in terms strongly interacting Luttinger liquids
with � � 1 with the residual Fermi surface disappearing. We construct
integrable models with such behaviour—models given by the SU(ν) t–J
interaction with a hard-core repulsive potential between electrons at distances
less than or equal to 
. The models exhibit both weakly and strongly
interacting Luttinger behaviours with � varying continuously in the range
0 � � � 1

2 (1 + 
 − 1/[ν(1 + 
)])2 depending on the electron density. In
the extreme high-density limit the model exhibits a Mott–Hubbard gap and
reduces to an isotropic Heisenberg chain with a new spacing parameter 
 + 1.

Exactly solvable models of strongly correlated systems have been intensively studied recently,
with the aim of understanding the mechanisms underlying high-Tc superconductivity. An
example is the t–J model [1] which has dominant superconducting correlation functions. In
this letter we introduce a new integrable model whose low-energy behaviour is described by
strongly interacting Luttinger liquid. We propose that this type of state can account for the
observations of high-resolution photoemission experiments on the two- and one-dimensional
compounds K0.3MoO3 and (TaSe4)2I which show extremely low spectral intensity at the Fermi
level. Hence the density distribution function has no peculiarities at the Fermi level [2]. In both
systems such behaviour is realized above the Peierls temperature, where strong fluctuations
modify the Fermi-step behaviour.

We shall show that such a behaviour of electrons is found in the model studied below
in the high-electron-density region (with strong density–density fluctuations) near the metal–
insulator phase transition. This suggests that long-range strong repulsion is present in these
materials and may account for the observations. We propose models incorporating an integrable
form of long-range repulsion. The particular form, though not realistic, allows a complete
analysis of the long-range properties of the model, which we expect to be in the same
universality describing these materials.
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We study an integrable version of the degenerate SU(ν) t–J model with a hard-core
repulsion forbidding electrons at distances less than or equal to 
, measured in units of
the lattice spacing. We shall show that its low-energy behaviour is governed by a strongly
interacting Luttinger liquid characterized by a large value of the critical exponent for the
momentum distribution function. This state appears at high electron density for any 
 � 1.
Roughly speaking, this electron state is a mirror image of the free Luttinger-liquid state [3]
that governs the supersymmetric t–J model with long-range interactions [4]. There is a well
defined Fermi surface in the free Luttinger-liquid state; a residual Fermi surface remains in the
Luttinger-liquid state but it has disappeared in the strongly interacting Luttinger-liquid state.

The dynamics of the hard-core fermions is described by the Hamiltonian

H =
L∑

i=1

{
P


[
−t

ν∑
β=1

(c
†
i+1,βci,β + c

†
i,βci+1,β)

+ J

ν∑
β,γ

(c
†
i,βci,γ c

†
i+1+
,γ ci+1+
,β − ni,βni+1+
,γ )

]
P


}
(1)

where c
†
i,β and ci,β are the creation and annihilation operators of fermions with colour index

β = 1, 2, . . . , ν at lattice site i, t is the hopping integral, J is the constant of the exchange
interaction, P
 is the projector forbidding there being two particles at distances less than or
equal to 
. The case 
 = 0 recovers the projector operator, when the occurrence of two
electrons on the same lattice site is forbidden. By ni,β = c

†
i,βci,β we denote the number

operator for electrons on site i with colour index β. The system consists of N electrons on the
chain with L sites (L is assumed to be even).

We now turn to the diagonalization of the model Hamiltonian (1) using the coordinate
Bethe-ansatz approach. The Schrödinger wave function takes the form

ψ(x1, x2, . . . , xN)β1,β2,...,βN
=

∑
P

sgn(P )A(P |Q)β1,β2,...,βN
exp

(
i

N∑
j=1

kPjxQj

)
(2)

where the P -summation extends over all the permutations of the momenta {kj } and Q =
{Q1, . . . ,QN } is the permutation of the N particles such that their coordinates satisfy
1 � xQ1 � xQ2 � · · · � xQN � L. The coefficients A(P |Q) arising from the different
permutations Q are connected by the two-particle S-matrix:

S(ki, kj ) = exp[−i
(ki − kj )]
λi − λj − iPij

λi − λj − i
(3)

where the operator Pij interchanges the colour indices of the particles and the λj are the
‘dressed’ momenta rapidities that are related to the momenta by the following relations:

λj =




−1

2
cot

kj

2
for J = t

1

2
tan

kj

2
for J = −t .

The S-matrix follows from studying Schrödinger’s equation for two particles, when they
occupy the ‘interacting’ lattice sites at distances 
+ 1. Though the resulting S-matrix satisfies
the Yang–Baxter equation, integrability is not guaranteed on the lattice since three particles
(or more) may interact at a time and destroy it. A direct calculation shows that this is not the
case here and the model is integrable.

The problem of diagonalizing the colour degrees of freedom encoded in the S-matrix (3)
can be solved by standard algebraic methods. For a state whose symmetry is specified by
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a Young tableau with ν rows of length ni, i = 1, . . . , ν, we introduce the colour rapidities
λ(r)
α (α = 1, 2, . . . ,Mr; r = 0, . . . , ν − 1), where Mr = ∑ν

1+r ni is the number of rapidities
in the set {λ(r)

α }, Mν = 0,M0 = N . The colour rapidities satisfy the following nested Bethe-
ansatz equations:

(
λ
(0)
j − i/2

λ
(0)
j + i/2

)L−
N

=
N∏
i=1

(
λ
(0)
i + i/2

λ
(0)
i − i/2

)
 M1∏
α=1

λ
(0)
j − λ(1)

α − i/2

λ
(0)
j − λ

(1)
α + i/2

N∏
j=1

λ(1)
α − λ

(0)
j + i/2

λ
(1)
α − λ

(0)
j − i/2

M2∏
δ=1

λ(1)
α − λ

(2)
δ + i/2

µ
(1)
α − λ

(2)
δ − i/2

= −
M1∏
β=1

λ(1)
α − λ

(1)
β + i

λ
(1)
α − λ

(1)
β − i

Mr−1∏
γ=1

λ(r)
α − λ(r−1)

γ + i/2

λ
(r)
α − λ

(r−1)
γ − i/2

Mr+1∏
δ=1

λ(r)
α − λ

(r+1)
δ + i/2

λ
(r)
α − λ

(r+1)
δ − i/2

= −
Mr∏
β=1

λ(r)
α − λ

(r)
β + i

λ
(r)
α − λ

(r)
β − i

for r = 2, . . . , ν − 1;α = 1, . . . ,Mr

(4)

and, in terms of the rapidities λ
(r)
j , the eigenvalues and the magnetization are given by

E = −2JN + J

N∑
j=1

1

(λ
(0)
j )2 + 1

4

(5)

Sz = 1

2
(ν − 1)N −

ν−1∑
r=1

Mr. (6)

The structures of the Bethe-ansatz equations are independent of the sign of J , but the
ground state and the excitations above it depend on it. We will briefly summarize the results
of the exact solution of the model for the antiferromagnetic coupling J = 1. More detailed
discussion of the model and its anisotropic variant will be given elsewhere.

In the thermodynamic limit the rapidities have, in general, complex values:

(i) Real charge rapidities, belonging to the set λ(0)
j , and corresponding to unpaired electrons.

(ii) Strings of complex spin rapidities, representing colour states

λ
(r)
α,n,k = λ(r)

α,n + i(n − 2k + 1)/2 for k = 1, 2, . . . , n.

(iii) Complex spin and charge rapidities describing bound complexes of m electrons (m � ν).

The ground state consists of bound complexes (for a discussion of the validity of the string
hypothesis involving complex momenta, see reference [5]):

λ(r)
p = & + ip/2 for r � ν − 1;p = −(ν − r − 1),−(ν − r − 3), . . . , (ν − r − 1).

In the ground state the Bethe equations (4) reduce to sets of coupled linear integral
equations for the ‘particle’ ρ(&), σ (r)

m (λ), and ‘hole’ ρh(&), σ
(r)
hm(λ), density functions. After

Fourier transforming these equations we obtain

ρ
(r)
h (ω) + ρ(r)(ω) +

∞∑
q=1

σ (r+1)
q exp(−q|ω|/2

+
ν−1∑
l=0

ρ(l)(ω) exp[−(r + l − Qr,l)|ω|/2]
sinh[(pr,l + 1)ω/2]

sinh(ω/2)

= (1 − 
n) exp[−(r + 1)|ω|/2] for r = 0, 1, . . . , ν − 1 (7)
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σ
(r)
hmω) +

∞∑
n=1

[2 cosh(ω/2)σ (r)
n (ω) − σ (r+1)

n (ω) − σ (r−1)
n (ω)]

× exp[− max(m, n)|ω|/2]
sinh[min(m, n)ω/2]

sinh(ω/2)

= ρ(r−1)(ω) exp(−m|ω|/2) for r = 1, 2, . . . , ν − 1 (8)

where Qr,l = min(r, l)− δr,l . The last set of equations hold for an arbitrary m = 1, 2, . . . ,∞
with σ (0)

m (λ), σ
(0)
hm(λ), σ (ν)

m (λ), σ
(ν)
hm (λ) being identically zero. Apart from the driving terms,

these equations are identical to those of the degenerate supersymmetric t–J model [6] and the
degenerate electron gas with an attractive δ-function potential [7].

Expressing the ground-state energy density, ε = E/L, in terms of the solution densities
we obtain

ε = −2n +
ν−1∑
r=0

∫
d& ρ(r)(&)

r + 1

&2 + (r + 1)2/4
(9)

where the total density of electrons is given by

n =
ν−1∑
l=0

(l + 1)
∫

d& ρ(l)(&). (10)

Using the Bethe-ansatz equation we study the Fermi velocity of electrons and long-distance
power-law behaviour of the correlation functions in the ground state. The analysis of low-
lying excitations shows that there are one charge and ν − 1 spin gapless excitations [6]. The
Fermi velocity of the charge gapless excitation vc is given by vc = |ε′(Q)|/[2πρ(ν−1)(Q)] (the
prime denotes a derivative). The dressed energy ε(&) is the solution of the following integral
equation:

ε(&) −
∫ Q

−Q

d&′ Kν−1(& − &′)ε(&′) = −2πK1(&) − µ′ (11)

and the kernel Kj(&) is

Kj(&) =
∫ ∞

−∞

dω

2π

sinh(ωj/2)

sinh(ων/2)
exp(iω& − |ω|/2) (12)

and also the & Fermi level Q is defined by ε(±Q) = 0, where µ′ is the chemical potential.
The Bethe-ansatz equations (7), (8) can be solved numerically for arbitrary values of the

parameter 
 and the electron density. Numerical results for the ground-state energy per lattice
site are presented in figure 1 for several values of the parameter 
. For the sake of comparison
we have presented the ground-state energy of the degenerate (dotted line) t–J model [6]. We
clearly observe that the energy increases with 
. The minimum value is realized near or at the
extreme density nmax = 1/(1 + 
), depending on 
 and ν.

In figure 2 we show the Fermi velocity obtained numerically for several values of 
 and
ν = 3. The system is metallic except for n → 0, nmax where the Fermi velocity tends to
zero. The density nmax corresponds to a fully filled electron subband when the dynamics of
the electrons is frozen, and a Mott transition to an insulating phase occurs—to a Heisenberg
system with a new spacing parameter
+1. Note that the height of the maximum shifts towards
the high-electron-density region and increases with 
. The value of vc decreases with ν.

The long-distance behaviour of the charge-density n(r) correlator is characterized by the
exponents ηj [8] (kF = πn is the Fermi momentum):

〈n(r)n(0)〉 � n2 + A0r
−2 +

ν∑
j=1

Aj cos(2jkF r)r
−ηj .
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Figure 1. The ground-state energy per site versus the
electron density. The dotted line represents the case

 = 0. The individual curves are labelled by the values
of the parameter 
.

Figure 2. The Fermi velocity—similar to that for figure 1.

The exponents can be expressed as

ηj = 2j (ν − j)

ν
+

j 2α

ν2
. (13)

Here α = 2[ξ(Q)]2, with ξ(Q) the dressed charge at the & Fermi surface, the dressed charge
function ξ(&) being defined through the integral equation

ξ(&) −
∫ Q

−Q

d&′ Kν−1(& − &′)ξ(&′) = 1 − 
n. (14)

The exponent α is plotted in figure 3. We observe that it depends on the electron density, its
value decreasing monotonically from 2ν to 2/(1 + 
)2 as n increases from zero to nmax .
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0
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Figure 3. The exponent α as a function of the electron density.
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The momentum distribution function close to kF is determined by the exponent �:

〈nk〉 � 〈nkF 〉 − constant × |k − kF |� sgn(k − kF ) (15)

where the exponent � is given by

� = 1

α

(
1 − α

2ν

)2

. (16)

� increases monotonically from zero to 1
2 (1+
−1/[ν(1 + 
)])2 with the density. For 
 � 1

there will be some density nc for which �(nc) = 1. In the low-density limit the critical
exponents η1 = 2 and � = 0 are the canonical exponents characteristic of the noninteracting
electron system.

In figure 4 we plot � as a function of the density for ν = 3, and indicate the values
of nc where there is a crossover from a Luttinger-liquid regime (0 < � < 1) to a strongly
interacting Luttinger-liquid regime (� > 1), where the residual Fermi surface has disappeared.
The density nc decreases with the increase of 
 and the region of strongly interacting Luttinger
liquid grows. In this regime the hard-core potential dominates. The behaviour in this regime
resembles the ν = 1 case which does not include the exchange interaction and describes
spinless fermions interacting only via hard-core repulsion.

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

nc(1+∆)

ν=3

n(1+∆)

Θ

2

1

∆=3

Figure 4. � characterizing the Fermi-point singularity of the momentum distribution function as
a function of the electron density for ν = 3, 
 = 0 (dotted line) and 
 = 1, 2, 3 (solid lines). The
broken line separates off the strongly interacting Luttinger-liquid state.

In summary, we have presented a soluble generalization of the multicomponent t–J model,
leading to nontrivial Luttinger-liquid behaviour. We have obtained the exact correlation
exponents for an arbitrary density of the electrons. The limit � → 0 that corresponds to
the noninteracting electron system is realized in the low-density limit. A radically different
situation is found for high electron density, where a strongly interacting Luttinger liquid with
� > 1 appears. This state is due to the strong competition between the exchange interaction
and the hard-core repulsion potential that dominates at high electron density. In the extreme
high-density limit the system undergoes a metal–insulator transition, where the insulator is
described by an isotropic Heisenberg chain with a spacing parameter 
 + 1.
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